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AIlItraet-A metllod for reducing the sile of finite element systems in dynamics is presented. TIle technique
is based upon avariational theorem in which it is admissible todescribe the inertial properties of structures by
way of independent displacement, velocity and momentum fields. This theorem allows us to construct
n:duced sYstemS for problems in structural mechanics which retain the full rate of convergence of systems
employing "COMistent" mass matm:es. An error llIlalysis of the scheme and numerkal examples are
presented.

I. INTRODUCTION

In this paper we investigate a finite element method for dynamics problems in which there exists
considerable 6exibility in the definition of the mass matrix. The technique emanates from a
variational formulation in which the displacement, velocity and momentum fields may be taken to
be independent. In the next section we present some variational theorems of this sort for
application to linear elastodynamics. Based upon specific forms of these results, in which the
momentum field is eliminated, we set up the spatially discretized finite element equations in
Section 3. If the number of velocity degrees of freedom is less tban the number of displacement
degrees of freedom, then the finite element equations may be combined to form reduced systems
involving fewer unknowns. An essentially identical approach can be used in reducing the size of
problems of heat transfer. In Section 4 we include an error analysis of the scheme for eigenvalue
problems as weD as a wide class of hyperbolic and parabolic problems. The main result is that the
rate of convergence of the consistent mass model is maintained as long as k~ k -m. where 2m is
the order of the spatial differential operator and k (k. resp.) is the degree of the complete
polynomial contained in the displacement (velocity. resp.) interpolation assumption. In addition,
the boundedness property of frequencies, characteristic of the consistent mass model, is
maintained by the reduced system.

These developments imply, in particular, that reduced systems may be constructed, for the
common beam, plate and shell elements, in which rotational degrees of freedom are eliminated,
and for wbich the rate of convergence of the consistent mass matrix is retained. Some examples
along these lines are discussed in Section 5. Numerical corroboration of these results is presented
in Section 6.

2. VARIAnON AL THEOREMS FOR LINEAR ELASTODYNAMICS

Variational theorems can be constructed for problems of linear elastodynamics (and, in fact,
other and more general theories) in which displacement, velocity and momentum fields are taken
to be independent. Ideas alOng these lines go back, at least, to the work of Livens (see Section
26.2 of Pars[l21 and Appendix I of LanczosnO)} pertaining to the dynamics of mass points and
rigid bodies. In the present work we analyze further the technique suggested io[9]. However, we
have recently realized that our approach may be viewed under the general heading of dual
complementary variational principles as extensively developed by Oden and Reddy{1l}. We do
not exploit the techniques or results of this subject in the present work.

We consider here the standard initial-boundary-value problem of linear elastodynamics.
Namely let 1ll represent the displacements, VI tbe velocities. Pi the momenta, Cl/l4 the elastic
stiffness coefficients, f, the body force and p the mass density. Define a functional

F =LT {L (-! pV,tI, - p,(~ - V;)+~ Cijkllll.jUt.1 - hU,) dx - L1T tUida} dt, (I)

tPresent address: Division of Engineering and Applied Sciellce, Califomia Institute of Technology, Pasadena, CA 91125,
U.s.A.
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where n is a bounded region in R3with nice boundary an, anT is that part of an on which there
exists prescribed tractions 1;, anu = an - anT is the complement of anT in an, upon which
displacements UI are prescribed, dx is the volume element for n, da is the area element for an, t
denotes time, T > 0, a superposed dot indicates time differentiation (i.e. UI = aU11at) a comma
indicates differentiation with respect to the coordinates (i.e. UI.; = au;/ax;) and, finally, the
summation convention is employed for repeated indices. In (1) U.. Vi and Pi are considered to be
independent. Assume Ui = iii on anu • Then the first variation of F is zero, i.e.

0= iT {In (- (pVi - P;)~i - (UI - VI)'}'i +(Pi - (Cilk,Uk.,),j - f;)al)dx,

+ ( (ntClJlduk.1 - 1;)aida} dt,
JaoT

(2)

where n/ denotes the unit outward normal vector with respect to an, for all a,,{31 and '}'I such that
a, = 0 on anu and at t = 0 and t = T, if and only if Ui, Vi and PI satisfy the equations of linear
elastodynamics:

and

inn (3)

(1) can be generalized in the usual way to include the initial conditions as Euler-Lagrange
equations (see(8]). However, this is peripheral to our main purpose here.

A suitable functional for the case of free vibration may be deduced from (1). Namely, assume
harmonic dependence, f, =0 and homogeneous boundary conditions; then

(4)t

where w is the circular frequency, is stationary, i.e.

(5)

for all a" {31 and 'YI such that al = 0 on anu, if and only if U" Vi and PI satisfy the equations of free
vibrations:

and

inn (6)

In the sequel we consider the special case in which it is assumed that PI =PVI ab initio.

tStrlctly speaking, one should introduce time-independent functions ii" ii, and p" defined by u, = ii, sin wI, VI = wii, cos wI
and p, =wp, cos wt, when discussing the case of free vibration. To keep down the proliferation of notations, we shall retain the
use of u" v, and p, for this case also. There should be no confusion as the context makes the meaning ofthe variables clear.
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Substituting this constraint into (I), we obtain

751

Assuming the same conditions which lead to (2), we obtain all but (3)\ as Euler-Lagrange
equations for H.

In a similar fashion, we obtain from (4)

(8)

for which all but (6)\ are Euler-Lagrange equations.
Similar results for beam, plate and shell theories are easily obtained.
With independent interpolatory assumptions for u/ and v" we are able to create finite element

methods with mass matrices other than those which have been termed "consistent."

3. FINITE ELEMENT FORMULATION
The variational theorems presented in the preceding section may be used to derive finite

element models in which alternative descriptions of the mass matrix are possible. Consider an
individual element. Select shape functionst

(9)

where De and Ve are the elh element's nodal displacement and velocity vectors, respectively. Note
that tile and t/le are in general not the same. Assume, for simplicity, that ~ and t are zero.
Substitute (9) into (7) and perform the integrations:

(10)

where ~ indicates summation over all elements, fie is the volume of the eth element,
We = 1. pr/JeTt/le dx, k. is the element stiffness matrix, and 8e = fOe pr/J.Ttil. dx. Employing the
obvious notation, the global equations, including the imposed kinematic constraints, are obtained
by setting the first variation of H to zero:

(11)

In a similar fashion, we can use I to generate the matrix equations of free vibration (or,
equivalently, we can assume harmonic dependence in (11):

AU = WV, }
- (J)2AT V+ KU = O.

V may be eliminated from (11) and (12) in the obvious way (assuming det W ~ 0):

(12)

and
M*U+KU=O, }

(K - (J)2M*)U = 0,
(13)

tWarning: We shall not introduce new notations for the approximate finite element fields which we employ in the present
section.
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respectively, where M* = ATW-IA is the mass matrix in the present theory. Note that if the
velocity degrees of freedom are not coupled from element to element, then M* can be directly
assembled from the element contributions m~ = a/w.-Ia•.

The case of main interest to us is when the number of entries in V exceeds the number in V. In
this case it is possible to define reduced systems (i.e., ones involving fewer degrees of freedom).
For example, assuming det K '# 0, we can eliminate V:

K*V+WV=O, }
(W - w2K*)V = 0,

(14)

where K* = AK-IAT is the reduced stiffness. In (14), W is banded whereas K* is full. The
solution of these equations may be obtained by any number of available algorithms.

Another possibility for constructing reduced systems is to employ global approximations for
v in conjunction with the usual finite element approximations of u. The reduced systems would
have the same form as those in (14). An approach such as this might be useful when the geometric
complexity of the structure in question necessitates a fine discretization to define the stiffness,
but only very low mode response is of interest.

To convert the reduced systems to forms which can be solved by standard algorithms, the
following procedures may be employed.

For implicit algorithms for (14)1 or generalized eigenvalue form algorithms for (14h:

(i) Factor K: K = LLT, where L is lower triangular.
(ii) Solve LZ = AT for Z.

(iii) Form K* = ZTZ, making use of the symmetry of K*. Solve (14)1 or (14)2'
(iv) To recover U, solve: LTV = - ZV for (14)1; or LTV = w 2ZV for (14h.

For explicit algorithms for the time-dependent case or standard eigenvalue form algorithms,
repeat steps (i) and (ii) above, then:

(iii)' Reduce Z: Z = QR where QTQ = I and R is upper triangular. Note K* = RTR.
(iv)' Solve RTSR = W for S.
(v)' Solve for Y: Y+SY=O, or (S-w~)Y=O, where Y=RV.
(vi)' Recover V by solving: LTV = - QY, or LTU = w2QY.

4. ERROR ANALYSIS
In this section we establish the error estimates for the reduced systems. Ample background

for the ensuing analyses is provided by the book of Strang and Fix[l3].
Throughout this section we adopt much of the standard error analysis notation. The way the

preceding variational formulations fit into the general scheme to follow should be obvious. In the
sequel, C denotes a general constant whose value may change from line-to-Iine in the inequality in
question.

By Ct we mean the space of functions u :n.... R II whose (classical) derivatives of order I,
o$ I $ k, exist and are continuous throughout n. Here we assume n is a bounded region in R II

with boundary an of class C~.

Let L 2 denote the space of (equivalence classes 00 mappings u :n.... R II which are Lebesgue
square integrable, i.e. 10 u . u dx < 00. The L 2 inner product and norm are defined in the usual
way: (u, v) = ~ u . v dx, and Ilull = (u, U)I/2, respectively.

Let H' denote the Sobolev space of mappings u: n.... R II which have (distributational)
derivatives of order I, 0 $ 1$ S, in L 2• H' is a Hilbert space with inner product and norm:

(u, v), = ±(D'u, D'v), and Ilu II, = (u, u )/'2, respectively, where D ' indicates the total derivative
1=0

of order l.
Let A be a linear partial differential operator of order 2m, with smooth (i.e., C~) coefficients,

having dense domain DA in L 2 • We assume A is elliptic and that there exist positive constants CI

and C2 such that cllluIV$(Au, u)$ c211ullm 2, for all u in DA •
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To fix ideas we shall consider the case of the boundary value problem

Au +qu = f,

753

(15)

where q is a smooth positive function defined on the closure of OJ is in L2 and u is required to
satisfy appropriate conditions on 00. Without loss of generality, we may assume these boundary
conditions to be homogeneous. In this case it is well known from the theory of partial differential
equations that

where c is a constant. In particular, if f is in C" then u is in C...
We are primarily interested in the eigenvalue problem

Au =Au, (16)

where again u is required to satisfy the boundary conditions. For this case it is well known that
there exists an infinite sequence of real, positive eigenvalues,

and corresponding orthonormal eigenvectors Uh U2, •• • , of class COO.

The energy inner product is defined by integration by parts:

a(u, v) = (Au, v),

where u,v satisfy the boundary conditions. The Galerkin equations corresponding to (15) and (16)
are

a(u, v) +(qu, v) =(f, v),

a(u,v)=A(u,v),

(17)

(18)

respectively, where u and v are in E s{u: u is in Hm and satisfies certain essential boundary
conditions}. A weak solution of (15) or (16) is a function u in E which satisfies (17) or (18),
respectively, for all v in E. The Galerkin equations are the basis of finite element approximations
to (15) and (16).

Let SIt and SIt be closed, finite-dimensional subspaces of E. Let N =dim SIt and
N = dim SIt. These spaces are to be though of as finite-element spaces with mesh parameter h.
Let

denote orthogonal projection operators with respect to the L 2 inner product. We assume SIt :J Pk

and SIt :::> P~, where Pk is the space of complete polynomials of degree k. In addition we assume
that the following approximation theorems hold for SIt and SIt (see Ciarlet-Raviart[3J):

(19)

I A I h~+I-'1 Iv - 1I"V , :s C2 v ~+h

for all v in E, where /vl,.= (D'v, D'v)1/2.
4.1 Definition. u" in SIt is the consistent finite element approximation to u, the solution of

(15), if and only if

for all wIt in SIt.

a(u", w")+(qu", w")=(f, w"), (20)



754 THOMAS J. R. HUGHES et al.

4.2 Remark. The standard error estimate for the consistent approximation IS (see
Strang-Fix [13]):

(21)

where eh = u - u h
•

4.3 Definition. ii h in Sh is the reduced finite element approximation to u, the solution of (15),
if and only if

(22)

and

(23)

for all wh in Sh, x h in Sh, where vh is in Sh.

4.4 Proposition. Assume Sh cS
h

• Then uh = u h
•

Proof In this case we may select x h = wh in (23). Thus ii h satisfies the same equation
as u h

• 0
4.5 Remark. This proposition establishes the intuitively obvious fact that using higher-order

finite element spaces for lower-order terms does not improve in any way upon the consistent
approximation.

4.6 Theorem. Let e
h = u h -ii h

• Then IIrllm :5chk+1Iii h lk+l'
Proof Subtracting (22) from (20) we get

By adding and subtracting qii h
, in the second term, we obtain:

Since eh is in Sh, we may choose wh = r in the above. By the assumptions on A and q, we have
then that

:5 cllqii h
- vhlillehll,

:5 cllqii h
- vhlllWllm.

We have employed the Schwartz inequality in obtaining the third line. Thus we have

From (23) we see that vh = -fi-(qii h
). Combining this fact with the approximation theorem,

(19), we obtain

o

4.7 Remark. Combining this result with the standard error estimate for the consistent
approximation, (21), we see that the full rate of convergence for energy is maintained as long as
k 2: k - m. This result can be trivially generalized to the case where (qu, v) is replaced by a
positive definite bilinear form b(u, v). For example, if b corresponds to a differential operator B
of order 2n, n :5 m, with smooth coefficients, then we have the estimate
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from which it follows that the full rate of convergence is maintained if k~ k - m + n.
We shall now consider the eigenvalue problem.
4.8 Definition. U,h in Sh and >.l in R are the consistent finite element approximations to u" the

lth eigenvector, and A" the Ith eigenvalue,.respectively, of (16) if and only if

for all wh in Sh, and

a(u,h, wh) = A,h(u,\ wh),

A,h = min {max R(w
h
)},

s,ltcs" .... inS,"

(24)

(25)

where S,h is any I-dimensional subspace of Sh and R(w h) = a(wh, Wh)/(Wh, wh), the Rayleigh
quotient.

4.9 Remark. The error estimates for (24) are standard (see Strang and Fix[13]):

lIu, - u,hll S ch k + ' A,(k+,)/2m,

Ilu, - u,hllm s ch k +
,
- m A,<k+l)/2m.

(26)

4.10 Definition. U,h in Sh and i,h in R are the reduced finite element approximations to u, and
A" respectively, if and only if

a(u,h, wh
) = i,h(V,h, wh

),

(V,h, xh) = (U,h, xh),

for all wh in Sh, x h in Sh, where V,h is in Sh, and

i,h = min { max R(w h
)},

Sfltes" wit inS,"

(27)

(28)

(29)

where R(w h) = a(w h, wh)/(-nw\ wh
).

4.11 Remark. It is immediate from (25), (29) and the fact that projections decrease norm (i.e.
II,"wll s Ilwll for all w in E), that i,h ~ A,h. In other words, the reduced eigenvalue approximations
are bounded from below by the corresponding consistent eigenvalue approximations, which are
in turn bounded from below by the exact values, i.e., il ~ A,h ~ A, for each 1= 1,2, ... , min
(N,N).

We note also that if i,h # i/, then V,h l.v/ with respect to the L 2 inner product and U,h l.iiph

with respect to the energy inner product. These are easy to establish.
Let wh = up

h in (27) and let x h = vp
h in (28):

a (iit, ii/) = i,h(V,h, ii/),

(V,h, v/) = (U,h, v/).

Now replace I by p in (27) and (28), and let wh = U,h and xh = V,h:

a(ii/, ii,h) = i/(v/, ii,h),

(v/, V,h) = (up
h

, V,h).

Combining (30) and (31) we obtain

(i,h - i/) (V,h, v/) = 0,

SolS Vol. 12 No. II-C

(30)

(31)
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which implies v," .Lv/ in L z• Since we also have

and i r" > 0, it follows that ~"Hip" with respect to the energy inner product.
4.12 Proposition. Assume SIt CSIt. Then fit" == ut" and i ," == A,".
Proof. Under this assumption iT restricted to SIt is the identity map. Therefore (29) is

equivalent to (25), i.e., it" =A,". Selecting x" =wIt in <2S) and using this and i ," == AI" in (27)
implies ii," =ut". 0

4.13 Remark. Proposition 4.12 tells us that, within the present scheme. we cannot improve
upon the consistent mass matrix. However, as we shall see below, we can define alternative mass
descriptions which retain the full rate of convergence of the consistent mass matrix, and are of
smaller size.

4.14 Lemma. Let u," = max 1(7Tw" - w", w")1 where e," is the set of all unit vectors
wit m.lc

contained in B,", the l-dimensional subspace of S" spanned by u/', uz", '" , u,". Then A, ~ A,
(1 - U,")-I.

Proof. By (29) we have

~"s max R(w"),
wI< inS/'

a(w", wIt)
= max (. " ")'w· in.,· lI'W ,W

Assuming w" is in e,", a simple calculation yields:

(7TW", w") = (w lo -(wIt - iTw"), w"),

= (w lo
, w lo

) - (w" - iTw", w"),

~1-Ullo.

Combining the above results and using (25) gives us that

i t
lo

:$ (1- (T,")-. max a(w", wIt),
w"ine,"

o
4.15 Lemma. UI" :$ Ch2(l<...I>!w" I2

•
11+1

Proof. By definition of the projection 7T, we have that wIt -7TW" is orthogonal to SIt. Using
this and the approximation estimate (19) we obtain

(w lo
, wit - iTw") = (w" - iTw lo

, W" - iTw")

= lIw" -iw"12

:$ Ch Z("+lllw"1 2

'+-J. o
4.16 Theorem. Assume h is small enough so that (TI" :$ 1/2. Then we obtain our error estimate

for the eigenvalues of the reduced problem:

Proof. By Lemmas 4.14 and 4.15 we have immediately that

~" ~ A,"O +2u,"),

S AI"O +Ch2(Ii+l».

(32)

o
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4.17 Remark. Comparing this result with (26).. we see that if k 2: k - m, then the full rate of
convergence of eigenvalues of the consistent approximation is maintained by the reduced
approximation. The situation for eigenvectors is similar, as we shall now show.

4.18 Lemma. Let i/' =u/' - u/'. Then

a(i,", wIt) = A,"(i,", w")+ (A," - A,")(u,", w")+ A,"(u," - v,", wIt),

for all wIt in SIt.
Proof. Subtracting (27) from (24) we obtain

a(i,", wIt) = (A,"u," - A,"v,", wIt),

= (A," (u," - u,") +(A," - A,")u," +A," (u," - v,"), wIt).

(33)

o

This identity enables us to estimate the Hm norm of i," in terms of the L 2 norm of t,", the
previously obtained estimate for A," - A,", and the L 2 norm of the lack-of-consistency a," - v,";
viz., let wIt = i," in (33), then

IIt,"llm :s; c{A," Iii," II + lA," - A,"I +A,"lla," - v," II}. (34)

4.19 Lemma. (At - A,") (-n-u,", u/") = A," (u," - -n-u,", at) for all i and j such that 1s i,j s min
(N,N).

Proof. The term -A,"(-n-u,", a/") appears on both sides so it remains to show that A/"(-n-u,",
an = A,"(u,", a/"). To do this we employ (24) and (27):

'''(' "-") '''('''' -It)A/ 7TU" u/ = A/ 7TU" 7TU/ ,

= a(at, u,");

o
4.20 Lemma. Assume that the multiplicity of A, is one. Then

where {:J = (-n-u,", v,").
Proof. Note that {u,"hN and {v,"hlit constitute orthogonal bases for SIt and SIt, respectively.

For convenience we assume Ilu," II = 1, 1:s i :s; N, and IIat II = 1, 1:s j :s N. Since -n-u," is in S", we
may expand it in terms of {v," hlit :

lit
,,, Q" ~ (. " ")"7TUi - ~v, = £J 7TU" v/ V/.

/ ..,
The estimates (26). and (32) and the fact that A, is isolated imply that there exists a constant p

such that

A," f a11·J.·_ <p, or Jr',
111./" -Ai"l

(35)

whenever h is small enough.
By the definition of -n-, (-n-u,", un = (-n-Ui'" -n-at). Now using Lemma 4.19 and the preceding

relations, we have that
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N

II1Tu,h -/3v,hI12 $ L (1TU,h, VJh)2,
J"'i

o

4.21 Lemma.IIil'II$21Iu,h -/3u/'II·
Proof. By the triangle inequality

Ile,h II = Ilu/' - U,h II $ Ilu,h _/3u,h II +lI/3ut - UlhII,

= Ilulh- PU,h II + 11(13 - 1)u/'II,
$ Ilu,h - pur II + 113 II·

We may choose the sign of Vl
h such that 13 2: O. Using the fact that Ul

h and ur are unit vectors we
get

1= lIu,h II $ Ilu,h - PU,h II +IlpulhII,
= lIu,h - pUlhII + /3.

Combining this with the previous result completes the proof.
4.22 Lemma. Assume AI is isolated. Then we have the estimates

and

Proof. Applying the triangle inequality to the result of Lemma 4.21, we get

o

(36)

(37)

Using Lemma 4.20 and the approximation estimates (19), we obtain lIelh II s ch '+1. Employing this
result in (34) yields that Ililhll", s ch'+I. 0

4.23 Remark. Comparing these results with (26)3' we see that if Ii 2: k - m the H'" rate of
convergence for eigenvectors is maintained.

We shall now remove the restriction that AI be isolated. The argument is tedious, but not
essentially different than before, so we only sketch the main points.

4.24 Lemma. Let AI have multiplicity Q, where Q is a positive integer> O. Then (36) and (37)
still hold.

Sketch of proof. Let A, =A,+I =... = Ai+Q' There is still a separation constant between these
eigenvalues and the others (see (35». Under these circumstances the analog of Lemma 4.20 is

(38)

where prj =(1TU~+,., v~+J)' 0$ r,j $ Q.
Let 1M = /J-I, where fl = [plj J, 0 $ i,j $ Q. We define linear combinations of the eigenvectors

as follows:
Q

Ui + r = L Q'JUj+rt
J=O

m+r= f Qljur+,.,
J-O

Q

where 0 $ r $ R. Let 07+r =1TU7+r = L QlJ1TU r+I"
/-0



A reduction scheme for problems of structural dynamics 759

Employing the triangle inequality, we can estimate the difference between Ul+r and its
reduced approximation, U~+r:

The first term on the right-hand side can be estimated using (26)2; the second and fourth can be
taken care of by the approximation estimate (19); for the third term we employ (38):

Applying (19) completes the L 2 estimate, from which the Hm estimate follows. 0
4.25 Remark. All of the preceding results extend to the generalized eigenproblem in which

(u, v) in (16) is replaced by a positive-definite bilinear form b(u, v). For example if
b(u, v) = (Bu, v), where B is a linear differential operator of order 2n, n :5 m, with smooth
coefficients, then the condition for maintaining the full rate of convergence for eigenvalues and
energy is that k~ k - m +n. The proofs go as before except, in stead of '"' one must employ P,
the orthogonal projection onto S~ with respect to b.

We shall now consider time dependent problems. Let a superposed dot indicate time
differentiation and let u(t) denote the function obtained from u: R x n -+ R" by freezing t in R.
We assume for simplicity that the coefficients of A are independent of t and that F is a C~

mapping from R to L 2, i.e., F is c~ in t. There are two important cases:

(hyperbolic case) u+ Au = t,

(parabolic case) u+Au = t,

(39)

(40)

where u is required to satisfy the boundary conditions and appropriate initial conditions. In the
former case there are initial conditions on u and fl, whereas in the latter only u need be specified.
The corresponding Galerkin equations are

(u, v)+ a(u, v) = <t, v),

and

(u, v) +a(u, v) = <t, v),

respectively, where u and v are in E. If Uo and uo are given initial data then

(u(O), v) = (uo, v),

and

(u(O), v) = (uo, v),

(41)

(42)

(43)

(44)

are the weak forms of the initial conditions for the hyperbolic case.
In the parabolic case only (43) is required. We assume "0 and Uo are in L 2 and Hm, respectively.
4.25 Definition. u ~ in S~ is the consistent finite element approximation to u, the solution of

(39) if and only if

(u~, w~)+ a(u~, w") = <t, w~),

(u"(O), w~) = (uo, w~),

(45)

(46)
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(47)

for all w" in S". From the theory of ordinary differential equations u" is a C~ mapping from R to
H m

•

4.26 Remark. The error for the hyperbolic case is conveniently measured in terms of the
energy

(48)

where K(e") = l/2(e". e") and U(e") = 1/2 a(e", e"). Because of our hypotheses on the operator
A, E -+0 is equivalent to lli"ll-+O and 11e"lIm -+0. The standard error estimate for the consistent
approximation is (see[I3]):

(49)

4.27 Definition. fi" in S" is the reduced finite element approximation to u, the solution of (39),
if and only if

and

(v", w")+a(fi", w")=(f, w"),

(v", x") =(a", x"),

(fi"(O), wIt) = (Uo. w"),

(50)

(51)

(52)

(53)

for all w" in S", x" in S", where v" is in S". As in the case of the consistent approximation, Ii" is
c~ in t.

4.28 Proposition. Assume S" CS". Then Ii" =u".
Proof. Pick x" =w" in (51) and (53). Then (51) evaluated at t =0, when combined with (53).

shows fi" satisfies (47). Time differentiating (51) and substituting the result in (50) yields that fi"
satisfies (45). Since (52) is equivalent to (46), tilt satisfies the same equations as u". 0

4.29 Theorem. Let B=K(i")+U(i"). Then BsBo+chhlt.
Proof. Subtracting (50) from (45) we get

Adding and subtracting ii" in the first term. and observing that v" =1rii" from (5 I). results in

Selecting wIt = i" in the above yields

~ Bs Ilii" -1rii"lIlli" II.

=llii" -1rii"IIv'(2) K(i")I/2,

s Ilii" -1rii"IIv'(2) BI /2.

The approximation theorem. (19), when applied to this result yields that



A reduction scheme for problems of structural dynamics

Integrating this relation over 0 to t yields

761

which was to be proved. 0
4.30 Remark. Eo1/2 is of order min (k + 1, k + 1- m). Therefore, if k2: k - m the full rate of

convergence of the consistent approximation is maintained, at least for short times.
We shall now consider the parabolic case.
4.31 Definition. u" in SIt is the consistent finite element approximation to u, the solution of

(40), if and only if

(Ii", wIt) +a(u", wIt) = (f, wIt),

(u"(O), wIt) = (uo, wIt),

for all wIt in S"; u" is C~ in t.
4.32 Remark. The error estimate for the consistent approximation is (see[l3J):

Ile"llm :5 chk+l-m llu ll k +1'

(54)

(55)

for all t.
4.33 Definition. li" in SIt is a reduced finite element approximation to u, the solution of (40), if

and only if

(v", wIt) + a(li", wIt) = (f, wIt),

(v, x") = (a, x"),

and

(li(O), wIt) = (uo, wIt),

for all wIt in SIt, x" in SIt, where v" is in S"; li" is c~ in t.
4.34 Proposition. Assume SIt cS". Then li" = u".
Proof. The proof goes along the same lines as that for Prop. 4.28. 0
4.35 Theorem. The error Ili"llm in the reduced approximation is of order min (k + 1, k + I).
Proof. Subtracting (56) from (54), using (57), and taking wIt = i" yields

(i", i") +a(i", i") = - (a" -?Ta", i").

It follows directly that

Cancelling IIi" II from the above results in

:t Ili"ll + Allli"ll :5l1a -?Tri"ll·

Multiplying this inequality by exp (Ad), and integrating from 0 to t yields

Ili"(I)II:5 exp (-Ad) Iii" (0)11

+ l' exp (A 1(1' - t)) Ila"(1') -?Ta"(1')11 d1',

:5 c{ h'+lllu~Ik+1 exp (-Alt)

+h'+1 l' eXP (Ab- t »llri(1')lld1'},

where we have applied (19) in deriving the second line.

(56)

(57)

(58)

(59)

(60)
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To obtain an estimate for a(e\en), we integrate (59) from t1 to t 2:

Applying (19), (60) and the mean value theorem to this result yields that a(e\ en) is order
2 min (k + 1, k+ 1) (see [13]), from which the assertion of the theorem follows. 0

4.36 Remark. Thus if k ;=: k - m the rate of convergence of the consistent approximation is
maintained (see Remark 4.32).

5. DISCUSSION

The previous developments enable us to design reduced finite element systems for dynamics
which retain the rate of convergence of systems employing consistent mass matrices. Some
examples are illustrative of the nature of the reduced system.

5.1 Beam element
For the standard cubic beam element (k =3, m =2) the full rate of convergence is maintained

as long as k ;=: 1. The optimal choice is then a linear element interpolation for the velocity field
(k =1) which may be made continuous at the nodes. This model, aside from the effects of
boundary conditions, results in a reduced system of one-half the number of degrees of freedom
as that of the standard consistent mass system.

5.2 Plate bending elements
A survey of the standard error estimates for plate bending elements has been given by

Ciarlet [2]. There are several basic plate bending elements which contain a full cubic displacement
function (k =3, m =2) and are thus of quadratic convergence rate in the H 2 norm (e.g., the 16
degree of freedom rectangular element of Bogner, Fox and Schmidt[1], the 16 degree of freedom
quadrilateral of Fraeijs de Veubeke[5], the 12 degree of freedom triangle of Clough and
Tocher[4], etc.). To retain the rate of convergence of consistent mass for these cases one needs
that k;=: I, i.e., the velocity field must contain a polynomial of the first degree. In the case of
triangles this is achieved most simply by assuming a linear velocity field with nodal degrees of
freedom at the vertices. For quadrilaterals it seems the most appropriate scheme is to employ a
bilinear velocity field, also with nodal degrees of freedom at the vertices. These procedures will
result in reduced systems of approximately 1/4 the size for the Bogner, Fox and Schmidt
rectangle, 1/5 for the Fraeijs de Veubeke quadrilateral and 1/6 for the Clough and Tocher
triangle.t

A reduced system for the compatible 9 degree of freedom triangle (k = 2, m = 2) of Clough
and Tocher can also be constructed, as above, with a linear velocity field. The reduced system
would be approximately 1/3 the size of the consistent mass system and would also maintain the
first-order convergence rate of this element. However, it may be preferable in this case to simply
use lumped mass, i.e. assign one-third the total mass to each translatory degree of freedom. The
standard result on numerical integration techniques (see Fried[6] and references therein)
guarantees that the lumped mass matrix (which is exact only for uniform translation) retains the
first-order rate of convergence of this element. A similar argument may be made for several other
slowly converging plate bending elements (see Ciarlet[2] for examples).

5.3 Classical elasticity
Classical linear elasticity involves a second-order elliptic differential operator so that m = 1.

Thus, to retain the convergence rate of consistent mass for compatible elements in which the
displacement interpolations contain complete polynomials of degree k, one needs the velocity
interpolations to contain complete polynomials of degree k =k - 1. For the standard families of
triangular and quadrilateral elements (see [14J) the velocity fields could be taken to be one order
lower than the displacement fields. For example, for the quadratic triangle (k = 2) the velocity

tThese ratios for the Fraeijs de Veubeke and Clough-Tocherelements are limiting values for infinite rectangular meshes.
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field could be taken to be linear and defined in terms of the three vertex degrees of freedom. The
reduced system for this case approaches 1/4 the size of the consistent mass system.

For this class of problems an alternative scheme has been proposed by Fried and Malkus [7J
which is remarkably simple and produces a diagonal mass matrix. They choose the locations of
the nodal degrees of freedom to coincide with the so-called Lobatto points. Numerical integration
formulas are then derived employing these points, which insure the maximal rate of convergence.
One unpleasant feature of the scheme is that for certain higher-order elements some negative
masses occur. Zero masses may occur also, but these may be eliminated by static condensation,
reducing the size of the system.

6. NUMERICAL EXAMPLES

To verify the results of the error analysis, spectral properties of three structural models were
studied:

6.1 Quadratic rod element
The differential equation for this model is

u"+ezlu=O,

where u represents the longitudinal displacement of the rod and til is the natural frequency; thus
m = 1. The boundary conditions studied were fixed-free and fixed-fixed. The displacement field is
assumed to vary quadratically within each element (k = 2), thus the element has 3 degrees of
freedom; one at each end and one at the midpoint. Results are presented for three cases: a
consistent mass matrix, a reduced system involving a linear velocity approximation for each
element (k = 1) and a diagonal mass matrix in which 1/6 the mass is lumped at the end-point
degrees of freedom and 2/3 at the midpoint. The theoretical rate of convergence of consistent
mass, which is quartic, is verified numerically in Fig. 1; w denotes the numerically computed
frequencies. The slope of the curves indicates the convergence rate of the fundamental
frequency. It is also seen in Fig. 1 that the reduced system retains the convergence rate of the
consistent mass matrix. This corroborates the present theory (l = k~ k - m = 1). The diagonal
mass matrix is also seen to retain the convergence rate of the consistent case. This matrix was
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arrived at via experimentation, but can be constructed following the theory of Fried and
Malkus[7].

In Fig. 2, the complete spectra for the fixed-fixed case is presented; n is the mode number and
N is the number of elements. These spectra are invariant and apply for aU N. The upper bound
property of the consistent and reduced' systems is evident. In addition, the maximum relative
error of any frequency is seen to be a minimum for the reduced case (approximately 15%). These
properties, as will be shown in the following examples, are common to the cases we have
investigated.
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6.2 Beam element
The differential equation for this example is

where u represents the transverse displacement of the beam. For this case m =2 and the
standard cubic displacement function is employed (k =3). Simply-supported boundary
conditions are considered. Results are presented for four cases: a consistent mass matrix, a
reduced system involving a linear velocity approximation for each element (k = 1, see Section
5.1), a diagonal mass matrix in which 1/2 the mass is lumped at each translatory degree of
freedom and zero is assigned to the rotatory degrees of freedom, and a linear displacement
function used for the mass matrix only. The last case results in a mass matrix of the form

M[2 1 OJ- 1 2
6 -­o .. '

where M is the element mass. As can be seen from Fig. 3, this ad-hoc approach has an adverse
effect on convergence rate. For all other cases the rate of convergence is quartic, which verifies
the standard error estimate for the consistent case and the present theory for the reduced case
(i.e. 1=k~ k - m =1). The lumped mass matrix scheme used here is the best diagonal mass
matrix for the beam.

In Fig. 4 spectra for these cases are presented. Again, the upper bound property of the
consistent and reduced cases is evident, as is the fact that the reduced spectrum produces the
least maximum relative error; approximately 12%.
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6.3 Plate bending element
Here the differential equation is

where V4 indicates the biharmonic operator and u denotes the transverse displacement of the
plate, thus m = 2. The plate is square and simply-supported boundary conditions are employed.
The Bogner-Fox-Schmidt element[l], which contains a complete cubic displacement function
(k = 3), was chosen for study. Results for three cases are presented: consistent mass, a reduced
system for which a bilinear velocity assumption is made (k = t, see Section 5.2) and a diagonal
mass matrix in which 1/4 the plate mass is lumped at each translatory degree of freedom. As can
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be seen in Fig. 5 each case exhibits quartic rate of convergence. This corroborates the standard
error estimate for the consistent case and the present estimate for the reduced case.

In Fig. 6 spectral results are presented for the above cases. The qualitative aspects of the
previous problems are again in evidence.

Examples involving elements of unequal size were run for problems 6.1 and 6.2 to see if any
of the results were special for regular meshes. In all cases the same rates of convergence were
observed, although the spectral lines changed somewhat in each case. We believe the high rates
of convergence of the lumped mass models are somewhat accidental; there is no analytical
evidence extant which indicates that lumped models can be constructed for arbitrary bending
elements which retain the fuil rate of convergence of consistent mass.
Acknowledgement-This research was partially supported by funds from Faculty Research Grant 615, University of
California, Berkeley.
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